Scattering Theory, the Adiabatic Decomposition of the Ζ-determinant and the Dirichlet to Neumann Operator

نویسنده

  • JINSUNG PARK
چکیده

We also discuss the relation of our work to the earlier work on the decomposition of the ζ-determinant by Burghelea, Friedlander and Kappeler (from this point on referred to as BFK). The present work is companion to the paper [10] and in several places we refer to [10] for the proof of a given statement and a more detailed discussion. Let D : C(M ;S) → C(M ;S) be a compatible Dirac operator acting on sections of a bundle of Clifford modules S over a closed manifold M . The operator D is a self-adjoint operator with discrete spectrum. We also assume that we have a decomposition of M as M1 ∪M2 where M1 and M2 are compact manifolds with boundaries such that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adiabatic Decomposition of the Ζ-determinant and Dirichlet to Neumann Operator

Abstract. This paper is companion to our earlier work [8] (see also announcement [7]). Let M be a closed manifold and Y be an embedded hypersurface, such that there is a decomposition of M = M1 ∪M2 into two manifolds with boundary M1 and M2 , with M1 ∩M2 = Y . In [8] we proved the decomposition formula for detζ∆ the ζ-determinant of a Dirac Laplacian ∆ on M . The contributions coming from M1 an...

متن کامل

Decomposition of the Ζ - Determinant and Scattering Theory

(1.3) M = M1 ∪M2 , M1 ∩M2 = Y = ∂M1 = ∂M2 . In this paper, we study the adiabatic decomposition of the ζ-determinant of D2, which describes the contributions in detζD coming from the submanifolds M1 and M2. Throughout the paper, we assume that the manifold M and the operator D have product structures in a neighborhood of the cutting hypersurface Y . Hence, there is a bicollar neighborhood N ∼= ...

متن کامل

Adiabatic Decomposition of the Ζ-determinant and Scattering Theory

We discuss the decomposition of the ζ-determinant of the square of the Dirac operator into contributions coming from different parts of the manifold. The “easy” case was worked out in paper [27]. Due to the assumptions made on the operators in [27], we were able to avoid the presence of the “small eigenvalues” which provide the large time contribution to the determinant. In the present work we ...

متن کامل

Scattering Theory and the Adiabatic Decomposition of the Ζ-determinant of the Dirac Laplacian

We discuss the decompositon of the ζ-determinant of the square of the Dirac operator into contributions coming from the different parts of the manifold. The “easy” case was worked out in the paper [12]. Due to the assumptions made on the operators in [12], we were able to avoid the presence of the “small eigenvalues”, which provide the large time contribution to the determinant. In the present ...

متن کامل

Adiabatic Decomposition of the Ζ-determinant of the Dirac Laplacian I. the Case of an Invertible Tangential Operator

Abstract. We discuss the decomposition of the ζ-determinant of the square of the Dirac operator into the contributions coming from the different parts of the manifold. The result was announced in [16] . The proof sketched in [16] was based on results of Brüning and Lesch (see [4]). In the meantime we have found another proof, more direct and elementary, and closer to the spirit of the original ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008